

NAREL ANALYTICAL REQUEST FORM

This form must be completed at least 14 days before sending any samples to NAREL for analysis. The requester is to complete all fields highlighted in BLUE and e-mail the form to Cindy White (white.cindy@epa.gov) along with an electronic copy of the project's QA plan and detailed site and project description.

Requester:				Request Date:					
Title:				Office/Region:					
Address									
Phone:	FAX:								
E-mail:									
PROJECT INFORMATION Please provide or attach a detailed site and project description including known or suspected hazards.									
Site Name and location:									
Site Program Type: ☐ Regional ☐	Superfund	Other							
Expected Arrival Date at NAREL:									
Number of Samples	Soil	Sediment	Water	Air Filter	Tissue	Other			
and Matrices:									
PROJECT SPECIFIC REQUIREMENTS For requirements other than NAREL standards, an Analytical Protocol Specification (APS) form must be completed. (Please see attachments for NAREL standards and the APS form.)									
Specialized Handling: Radiochemicals Hazardous Chemicals Biohazards Other									
Sample Preparation: NAREL Standard Other									
Quality Control: NAREL Stand	ard Othe	r							
Turnaround Time: NAREL Stand	ard Othe	r							
Data Reporting: NAREL Stand	lard 🗖 Othe	•r							
MDCs & RLs: NAREL Stand	ard Othe	r							
	NARE	L ANALYTICAL S	SERVI	CES					
						Check to Request			
Gamma Spectrometry (21 day ingrowth) Americium									
Gamma Spectrometry		Ted	echnectium-99						
Gross Alpha/Beta		Ra	adium-226 (water only)						
Tritium (water only)		Ra	ladium-228						
lodine-131 (water only)		Plu	lutonium						
Strontium		Ne	eptunium (soil only)						
Uranium		Ме	etals						
Thorium		Ме	ercury						

ATTACHMENT 1

NAREL STANDARD SAMPLE PREPARATION

Liquid samples are checked for pH and adjusted if necessary. Otherwise liquid samples are analyzed as received.

Solid samples are dried and ashed for all analyses except gamma which uses the dried portion. If only gamma and gross alpha and beta analyses are requested, then samples are only dried for analysis. Foreign materials such as rocks, sticks, leaves, etc. are removed before ashing.

Filter preparation is based on filter type, size, and requested analysis. Filters may be analyzed as received or may be dissolved prior to analysis.

NAREL STANDARD QUALITY CONTROL INFORMATION

Standard QC analyses at NAREL are performed on batches of up to 20 samples of similar matrices. The QC analyses include:

Method	Method blank	LCS	Replicates	Matrix spike
Gross α/β for air filters			X	
Gross α/β for water	X	X	X	X
Gross α/β for other matrices	X	X	X	
Gamma-ray spectrometry	X	X	X	
Tritium in water	X	X	X	X
Tritium in other matrices	X	X	X	If there is a chemical separation
Actinides	X	X	X	
Radium-226	X	X	X	
Radium-228	X	X	X	X
Strontium	X	X	X	
Iodine-131	X	X	X	
Technetium-99	X	X	X	X
Metals	X	X	X	X
Mercury	X	X	X	X

Note: For analyses requiring duplicate (replicate) and matrix spike analyses, a sufficient amount of sample must be received. The sample-duplicate combination and the sample-matrix spike combination can be performed on two different samples, e.g., one will be split and duplicated, the second will be split and spiked, or on one sample if at least three volumes of sample are received.

NAREL STANDARD TURNAROUND TIMES

Turnaround time for all analyses except Radium-226 is <u>60 calendar days</u> from receipt of sample(s) unless other arrangements are made before NAREL accepts the project. Radium-226 may require 10 *additional* days to complete.

Large numbers of samples, especially soil or solids, received at the same time may require longer turnaround times due to the sample prep required before analysis.

NAREL STANDARD DATA REPORTING

The NAREL standard data deliverable includes sample and QC results. Results will be reported as pCi/g (dry) for solids, pCi/L for liquids, and pCi/m³ for air filters. Results for hazardous waste analyses will be reported as μ g/L for liquids and mass/kg for soils. A hard copy of the report will be sent to the requester. (Electronic data deliverables are available upon request.)

NAREL STANDARD SAMPLE DISPOSAL

NAREL will dispose of samples <u>six months</u> after delivery of the data package(s). Solid samples will be returned to the requester if NAREL cannot arrange for disposal at a minimal cost.

ATTACHMENT 1

NAREL STANDARD MDCs & RLs

Standard MDCs and reporting limits are listed in the tables below. MDCs and Reporting Limits depend on a number of variables including sample size, counting times, instrument backgrounds, matrix interferences, dilutions, etc. The actual MDC and Reporting Limit for each sample will be different from those listed below based on each of these variables.

RADIOCHEMICAL MDCs								
Analysis Type	Drinking Water Aliquot Size	Drinking Water MDC	Water (other) Aliquot Size	Water (other) MDC	Solids Aliquot Size	Solids MDC	Air Aliquot Size	Air MDC
Gross Alpha	500 mL	1.8 pCi/L	200 mL	4.4 pCi/L	0.1 g	8.7 pCi/g	500 TO 100 TO 10	
Gross Beta	500 mL	1.4 pCi/L	200 mL	3.5 pCi/L	0.1 g	7 pCi/g	2500 m³	0.0015 pCi/m ³
Radium-226		office.	1 L	0.02 pCi/L	0.5 g	0.04 pCi/g		
Radium-228		4,000	1 L	1 pCi/L	0.5 g	2 pCi/g		
lodine-131	1,000	A Million	2 L	0.7 pCi/L				The second secon
Strontium-89			2 L	1 pCi/L	0.5 g	4 pCi/g		
Strontium-90			2 L	1 pCi/L	0.5 g	4 pCi/g		
Uranium- 234, 235, 238 Thorium-230, 232 Plutonium-238, 239 Americium-241			1 L	0.1 pCi/L	0.5 g	0.2 pCi/g	60000 m ³	2 pCi/m³
Thorium-227			1 L	0.2 pCi/L	0.5 g	0.35 pCi/g		
Thorium-228		and the second s	1 L	0.15 pCi/L	0.5 g	0.3 pCi/g		
Tritium			10 mL	0.1 nCi/L				

	Inorganic Metals Reporting Limits								
Analyte	Water Reporting Limit	Soil / Sediment Reporting Limit	Analyte	Water Reporting Limit	Soil / Sediment Reporting Limit				
Aluminum	200 *g/L	20 mg/kg	Magnesium	5000 *g/L	500 mg/kg				
Antimony	60 *g/L	6 mg/kg	Manganese	15 *g/L	1.5 mg/kg				
Arsenic	10 *g/L	1 mg/kg	Mercury	0.2 *g/L	0.1 mg/kg				
Barium	200 *g/L	20 mg/kg	Nickel	40 *g/L	4 mg/kg				
Beryllium	5 *g/L	0.5 mg/kg	Potassium	5000 *g/L	500 mg/kg				
Cadmium	5 *g/L	0.5 mg/kg	Selenium	5 *g/L	0.5 mg/kg				
Calcium	5000 *g/L	500 mg/kg	Silver	10 *g/L	1 mg/kg				
Chromium	10 *g/L	1 mg/kg	Sodium	5000 *g/L	500 mg/kg				
Cobalt	50 *g/L	5 mg/kg	Thallium	10 *g/L	1 mg/kg				
Copper	25 *g/L	2.5 mg/kg	Vanadium	50 *g/L	5 mg/kg				
Iron	100 *g/L	10 mg/kg	Zinc	20 *g/L	2 mg/kg				
Lead	3 *g/L	0.3 mg/kg							

ATTACHMENT 2 Analytical Protocol Specification (APS)

Please complete the APS for any project specific requirements where the NAREL standards listed above do not meet those required by the project's QA plan. More than one APS may be necessary to cover all requirements. NAREL will respond if requirements cannot be met by offering alternatives to the requirements which will be described on an Analytical Protocol Specification Alternate Proposal (APSAP) form and attached to the Project Acceptance Form (PAF.). The PAF and any APSAP forms will be sent to the requester for signatures indicating acceptance of the data delivery dates and any proposed alternatives.

Analyte List:	Analysis Restric	Analysis Restrictions:					
Matrix:	Possible interfer	Possible interferences:					
Concentration range:	Action level:	Action level:					
	MQOs Analytical QC						
Batch size: □ 20 samples □ Other	Timaly tical QC						
QC Sample Type	Frequency	Evaluation Criteria					
☐ Method blank							
☐ Duplicate							
☐ Laboratory control sample							
☐ Matrix spike							
☐ Matrix spike duplicate							
Activity An	alytical Process Requirements	Special Requirements					
Sample receipt and inspection							
Laboratory sample preparation							
Sample dissolution							
Chemical separations							
Preparing sources for counting							
Nuclear counting							
Data reduction and reporting							
Sample disposal							
Other							
Tu	rnaround Time Requirements						
Analysis		Special Requirements					
	·						
Other requirement not listed above: _							
Requester's signature:		Date:					

ATTACHMENT 3

NAREL SAMPLE SHIPMENT GUIDELINES

This document provides guidance in the shipment of environmental samples to NAREL for radiochemical and/or hazardous chemical analyses.

All shipments must comply with the requirements of current DOT regulations. Refer to the DOT Hazardous Materials Regulations contained in Title 49 CFR Subtitle B, Chapter 1, Subchapter C, Parts 171 through 180.

Before collecting samples please refer to the attached table for requested sample sizes, containers and preservatives. For matrices not listed contact the NAREL Analytical Services Coordinator at (334)270-7052.

Before shipping samples, notify the NAREL Analytical Services Coordinator at (334)270-7052 and arrange for sample receipt and subsequent sample return 6 months after results have been reported.

When packing samples for shipment:

- -Seal individual samples in plastic bags, preferably ziplock bags.
- -Use the correct amount of absorbent material for the volume present. Approved absorbent materials include vermiculite and cat litter.
- -The temperature of samples requiring refrigeration during transport MUST be maintained at or below 6°C.
- -lce in a sealed plastic bag or reusable ice substitute freeze packs are acceptable cooling media.
- -Chain of Custody forms MUST be sealed in a large ziplock bag and taped to the inside of the cooler lid

After samples are packed for shipment, secure the cooler with tape and attach a custody seal across the seam of the cooler lid.

All samples MUST be shipped overnight to arrive Monday through Friday. No deliveries are accepted on weekends or Federal holidays.

Send all samples to:

Cindy White
Analytical Services Coordinator
National Air and Radiation Environmental Laboratory
540 South Morris Avenue
Montgomery, Alabama 36115
(334) 270-7052

SAMPLE COLLECTION AND ANALYSIS INFORMATION

		Water S	Samples		Soil / Sediment Samples			
Analysis	Collection Volume	Acceptable Containers	Preservative	Holding Times	Collection Volume (g)	Acceptable Containers	Preservative	Holding Times
Metals (except mercury)	600 mL	Polyethylene	HNO₃ to pH <2	6 months	200 g	Polyethylene	Cool to ≤ 6°C	6 months
Mercury	400 mL	Polyethylene	HNO ₃ to pH <2	28 days	200 g	Polyethylene	Cool to ≤ 6°C	28 days
Volatile Organics	2 X 40 mL no headspace	40 mL glass vials w/ Teflon lined caps	pH <2 with H ₂ SO ₄ , HCl, or solid NaHSO ₄ Cool to ≤ 6°C	14 days	2 X 5 g	40 mL glass vials with Teflon lined cap	Solid NaHSO₄ Cool to ≤ 6°C	14 days
Pesticides & PCBs Semivolatile Organics	2 L	2 X 1 L amber glass container with Teflon lined cap	Cool to ≤ 6°C	Samples extracted within 7 days of collection and extracts analyzed within 40 days following extraction	1 full 8 oz glass jar	8 oz glass jar with Teflon lined cap	Cool to ≤ 6°C	Samples extracted within 14 days of collection and extracts analyzed within 40 days following extraction
Tritium	200 mL	Glass withTeflon lined caps	None, NO ACID	NA				
Other Radiochemical Analyses	4 L*	Plastic or glass	HNO₃ to pH <2	NA	~ 500 g	Plastic or glass	None	NA

^{*}Sufficient volume must be provided to allow a dedicated aliquant for gamma analysis.